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Coupling between an Abruptly Terminated
Optical Fiber and a Dielectric
Planar Waveguide

CHRISTOS N. CAPSALIS anp NIKOLAOS K. UZUNOGLU, MEMBER, IEEE

Abstract —The coupling between an optical fiber and a dielectric planar
waveguide is analyzed when both guides are terminated abruptly and are
facing each other. Mixed spectrum eigenwave representations of fields are
employed inside the waveguides while Fourier integrals are utilized to
describe the field in the space between the two guides. A coupled system of
integral equations is derived by satisfying the boundary conditions on the
terminal planes of both waveguides. A weak guidance approximation is
assumed to facilitate the analysis. Numerical results are presented for
several coupling geometries. Misalignment losses and coupling optimiza-
tion phenomena are investigated.

I. INTRODUCTION

PROBLEM OF great importance in optical com-

munication systems is to transfer light energy from a
planar or a linear waveguide to a single-mode optical fiber,
or vice versa. The planar waveguide could be an injection
laser or a semiconductor detector. Recently, composite
packages utilizing cylindrical microlenses have been tried
as a means of improving the coupling efficiency of laser
emission into optical fibers [1], [2], [3]. However these
techniques are still under investigation and as yet no
standard coupling method has emerged. The alignment of
microlenses is expected to be a problem. The laser active
layer thickness is around 0.2 pm while the single-mode
fiber core diameter is approximately 8 pm. Therefore, in
principle, the emitted radiation from a semiconductor laser
can be coupled into an optical fiber if the distance between
them is sufficiently small. Then it is crucial to examine the
achievable coupling efficiencies and the misalignment
tolerances of this simple coupling scheme. The positioning
of the fiber in front of the planar waveguide can be done
by using mechanical means, epoxy resin fixing, or even
monolithic integration techniques.

Theoretical analyses of laser diode to multimode fiber
coupling have been undertaken by several researchers
[3]-[6] when cylindrical or spherical lenses are employed.
Usually ray-tracing techniques are applied to estimate the
coupling efficiencies.
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Fig. 1. Single-mode fiber to planar waveguide coupling geometry.

The present paper deals with the coupling of an abruptly
terminated dielectric slab waveguide with a single-mode
fiber. In Fig. 1 the coupling geometry is defined. A single-
mode fiber of radius b is facing a planar waveguide of 2d
guiding layer thickness. The core and cladding region
refractive indices of the fiber guide are designated n, and
n,, respectively. The corresponding guiding layer and
cover-substrate refractive indices of the planar waveguide
are denoted by n% and n{, respectively. The space between
the two guides is assumed to be homogeneous and its
refractive index is denoted by n,. The distance between
the abruptly terminated guide parallel terminal planes is
w. The planar waveguide is taken to be of infinite width
along the y axis. The displacement of the propagation axes
of the two guides along the x axis is denoted by 4.

In the following analysis, an exp (+ jewt) time variation
is assumed for the field quantities and is suppressed
throughout the analysis. The free-space wavenumber is
ko= w/c, where c is the velocity of light in vacuum.

II. ANALYSIS OF THE COUPLING PROBLEM

In treating the coupling between a planar and a single-
mode fiber waveguide, an analytical technique bearing
similarities with a method developed in analyzing abruptly
terminated dielectric slab waveguides [7] will be utilized.
The method to be presented relies on the use of mixed
spectral field representations inside the guiding regions,
while a Fourier integral representation is employed in the
intermediate space between the two waveguides.

0018-9480 /87 /1100-1043$01.00 ©1987 IEEE



1044

In the following analysis, an incident guided wave prop-
agating inside the fiber along the positive z axis (see Fig.
1) is assumed. Then the dominant mode amplitudes are
computed inside the planar waveguide. Although in prac-
tice usually the laser diodes are used to feed power into
fibers, because of the reciprocity principle, the analysis of
the opposite problem presented in this paper provides the
" anwer to the practical problem of laser diode—fiber cou-
pling.

The single-mode fiber can support two degenerate HE |,
modes. In optical guides the weak guidance condition
always is satisfied [8]. This means that the validity of
n,zn; and n% 2 n{ could be used to simplify consider-
ably the field expressions and description of guided waves
in either fiber or planar waveguides. Then the guided
waves in fiber waveguide are linearly polarized. In the case
of a single-mode fiber, there are two orthogonal modes
polarized linearly along the x and y axes, respectively.
Then a single transversal electric field component, E, or
E,, could be used to describe the propagation of guided
waves. The gain-guided laser diodes operate exclusively
with the dominant TE (transverse electric) mode. There-
fore, inside the planar guide the dominant electric field
component will be along the y axis (see Fig. 1). It is
therefore of interest to examine mainly the case when the
incident wave from the fiber waveguide is polarized paral-
lel to the y axis. In addition to guided modes, the presence
of longitudinal discontinuities along the propagation axes
on both waveguides implies the excitation of radiation
modes. The mixed eigenwave spectrum used in the follow-
ing consists of the guided modes (discrete spectrum) plus
the radiation modes (continuous spectrum). The nonde-
polarizing nature of the encountered discontinuities allows
the use of a single field component in describing the
radiation modes [9]. Then it is possible to express the
radiation modes in terms of the electric field y component.
Therefore a scalar wave ¥(r) could be used to describe the
ficld either inside the fiber or planar waveguide.

A. Field Expansion inside the Fiber

In describing the field distribution inside the fiber wave-
guide (z < 0, see Fig. 1) a mixed spectrum of eigenwaves is
constructed by determining the solution of the wave equa-
tion

(V2+kin)¥(p.9,z)=0 fori=1,2 (la)
in cylindrical coordinates p, ¢, z, defined in Fig. 1, subject
to the boundary conditions

\I,(p7(p"Z)|p=h—=\1,(p7q)’z)|p=b+ (1b)
I¥(p.9,z) _9¥(p,9,2) (10)
ap p=b— (9[) p=b+
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on the core—cladding p = b interface. Equations (1a)—(1c)
are valid only for weakly guiding fibers, and their ap-
proximate nature should be stressed. In the Appendix the
mixed spectrum of a weakly guiding fiber is given. Then
the ¥, electric field (polarized along the y axis) inside the
single-mode fiber (z <0, see Fig. 1) can be expanded as
follows:

V,(p,9,2) = ¥o(p, )(e o7+ Rye /o)

+f0+ooqd‘1 ) R,(9)¥,(0.0lg)e” (2)

m=—0c0

where ,(p, ¢) is the guided-mode field distribution on a
z = constant transversal plane and ,,(p, plq) is the corre-
sponding radiation-mode field. Furthermore B, and =
(k3n? — g*)1/? are the propagation constants of the guided
and radiation modes, respectively. The unknown terms R,
and R, (q) in (2) are the reflection coefficients of the
guided and radiation modes, respectively.

B. Field Expansion inside the Planar Guide

The three-dimensional nature of the fiber guide radia-
tion pattern excludes the possibility of having y-axis-inde-
pendent-type waves inside the planar guide, the type most
frequently analyzed in the literature [10]. Then it is obvi-
ous that only hybrid modes (i.e., combination of transverse
electric and magnetic waves) should be excited inside the
planar waveguide. Indeed, if a rigorous solution is desired,
hybrid-mode field expressions should be adopted in ex-
panding the field. However because of the weak guidance
condition, in a similar way to the fiber guide, an ap-
proximate linearly polarized field distribution could be
taken to simplify the analysis. This assumption ensures
tractability, and its validity can be checked by observing
the variation of the obtained solution along the y axis,
which should be slow [11]. To this end, the ¥,-dominant
y-polarized electric field inside the planar guide can be
written as follows:

+ o0
V(X' y".2") =/_w da )

s=e,0o\n=

N,
{ 2 A(a)e7 U, (x)
1

+ 00
+ [ “dpB(a,p)e Mg (¥, p)} e (3)
0

where the subscripts s = e and o-are to show that the even
and odd modes; (x’, y’, z’) are the local Cartesian coordi-
nates of the planar guide (see Fig. 1) and are connected to
the fiber coordinates with the relations

x'=y—h
y'=y
Z’=z—w. (4)
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In (3) the set of functions { Uy (x"), Usy(x'),- - -, Us, (x’)}
is the discrete part of the spectrum. N, and N, are the
number of even and odd symmetry gulded modes respec-
tively. The radiation modes, constituting the continudus
spectrum, are described with the ¢ (x’, p) functions. Notice
that only waves propagating along the positive z axis are
taken into account in (3). The mode functions U, (x) and
@.(x, p) and their basic properties are given in the ‘Ap-
pendix. The dependence on the y’= y variable is descri-
bed with the exp(— jay) Fourier term. The values of v,
and the guided- and radiation-mode propagation cons-
tants, depending on the value of a, are determined by
solving the transcendental equations given in the Appen-
dix. Finally, A, (a) and B.(a, p) are unknown coef-
ficients to be determined.

C. Field Description in the Space between the Two Guides

Assuming in this region also the validity of the single-
"~ component electric field approximation and using cylin-
drical wave functions, the following expansion is obtained:

¥,(p,9,2) = fm Z J,.(\p)erm®

(CaNe 7+ CL(M)e™) (5)

J,(x) is the mth-order Bessel
are unknown expansion coefficients

where 7= (k3n— A2,
function, and Cm,C,,’,

to be determined.

D. Boundary Conditions

In order to determine the unknown coefficients appear-
ing in (2), (3), and (5), the boundary conditions on the
z=0 and z=w interface planes should be satisfied. An
integral equation approach will be employed in terms
of the unknown electric field distributions & (p, ¢)
and &,(x,y) on the z=0 and z=w planes, respec-
tively. By employing the orthogonality relations of the
{($n0.9) (0, 0lg),m=0,11,---,0<g<+o0} fiber
mixed spectrum eigenwaves, given in the Appendix, the
unknown coefficients Ry, R, (q) of (2) can be written as
follows:

1

R, _Hﬁf d¢f()+wpdpfl(p,¢)¢§(p,¢) (6)

1 7 + o0
Rm(q)=gfo2 dqofo pdp&,(p.9)¥5(p,9l).  (7)

Applying similar considerations by using the planar wave-
guide mixed spectrum eigenwaves (see the Appendix), the
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unknown coefficients in (3) are found to be

1 + o0 + 00 ,
Ag(@)=o- [ ay [ ax 6+ y)e Un(x)
)

1 +o +oo RN )
B(ap)=o [ "y [ “dea(x.y)e e (¥, p).
— o0 — o0

©)

In order to express the unknown coefficients C,,(A) and
C/(M) of (5) in terms of the & (p, @) and &,(x, y) field
distributions, use is made of the orthogonality relations,

oo 1
/0 pdpJ, (X, p)J,(N.p) =+3(A=X)  (10)

mm’* (11)

1 27 y
- doe/m—me =§
2 /(.) ¢

Then it can easily be shown that

C.(A)+CL(A)

L2 [ 0T (M. p)e 1796 12
—277]0 <Pf0 pdpJ, (X, p)e (p, @) (12)

C,(N)e ™ +C/(N)e/™

1

== dqo/ pdpJ, (A, p)e "8, (x', ") (13)

where the continuity of the electric field on the z =0 and
z =w planes is also incorporated.

In addition to the electric field, the continuity of the
tangential magnetic field components on the z=0 and
z=w planes should be satisfied. Then it is required to
have

v, 3v, . .
9z 9z atz= ( )
and
v, adv, 15
5 = a0, at z=w. (15)

On substituting (2), (3), and (5) into the continuity condi-
tions (14), and (15) and then introducing the expressions
(6)-(9), (12), and (13), the following system of integral
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equations is obtained:

—,BO\I'O(P,‘P)"'BO

1 Doy + o0
’ ’ ’ ’ ’ ’ / _1
——Mfo dqvfo p'dp’ &, (0", ¢ ) ¥ (0", ¢)
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¥o(0.9)

+51.7.T./0*°0qdq Y B dy [0 b 609 (0. 9'10) ¥ (0. 910)

m= —0o0

+ o0

1
_f NN Y T, (Ap)ermtro—

m=—0o0

1

1_6127w 0

f Ad\ 2 ,(?\p)e’""”r[—

m=—0c0

(& (0 @) —e ™8 (x', y)) +

("ml(Pla @) —e/™E, (X', ,V’)) =

s=e,0np=1"—"®

—fj da Y, Z/ dy’

Ta(N,07) e "8 (o, @) — e 76y (X', ¥') )

20 +oo _ ,
d(p/L p/dp/Jm(Ap/)e Jme (é)l(p/, (P’) — e/rw(g)z(x/q y/)

Py [ Twde T (A e
7 ’ ’ ’ e_m
— o, CPfO o’dp’J, (Ao
el 2m +oo o
T ), qu'/(; p'dp’J,(Ap)e /m? (16)

[

& (x!, y) e U, (x")v,,e U, (x)— / daf+oodp Y / dy’ f+oo

6 (x. y) e (X', p)Bre " (x, p).

The system of equations in (16) and (17) constitutes a
Fredholm integral equation of the first kind. In general it
is preferable to work with Fredholm integral equations of
the second kind, which are amenable to iterative or ap-
proximate solutions. Furthermore examining the physical
aspects of the coupling geometry, it is observed that when
n;=n, and n{=n}, a simple boundary value problem is
encountered. Therefore, since n, ~n, and n{~n} is al-
ways satisfied, it is desirable to transform the system (16)
and (17) into a Fredholm system of equations of the
second kind. The homogeneous term of this system should
be identical with the field distributions &,(p.¢) and
&5(x’, y") obtained when the reflection from a dielectric
slab between two different media is solved by simple
analytical techniques [12]. Furthermore, when n, = n, and
n{=n%, the contributions from the integrations should
vanish. Then following similar analytical techniques de-

s=e,0 T

(17)

scribed in [7] in treating the diffraction from an abruptly
terminated dielectric slab waveguide, after lengthy algebra
the following system is obtained:

& (p,p) =&(p,9)
2 + o0
+/ d(P/_/ P,dp'(Ku(PJPIP/’¢/)§1(P',¢>/)
0 0

+ K12(Pa oo’ (P/) ‘gz(P" Q’/))

Exlp, @)

(18)

&lp.9) =
Qa7 + o0

+ d ’ /d 14 K’) s /’ ’ éﬁ /’ 4

fo fpfo p'dp’ (K (p, le’,¢') &,(p". ¢)

(19)

+ Kzz(P, <P|.O',<P')6®2(P', (P’))
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where
BO elko"ow
(ko OtPo(p 9) = TS5 C2(p. 9)
Enlp, )= 1+ e/2komow
L) + e!2k0”0W -1

- (20)

& (p, p)2eskomov

’ 1+ ezlkO"OW 2jkon,w
_ [ — JKo
Gy v (1— e?skonow)

gzo(Pa‘P)= ( (21)

1
Ku(p,wlp',q>’)=—;(ﬂo— kony)o(o, @) g (o', @)+
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and solving for &, and &,. Then, substituting this solution
into the right-hand sides of (18) and (19), the first-order
solution is derived. The use of orthogonality relations
given in the Appendix and the integration formulas for the
products of two Bessel functions resulted in analytic ex-
pressions except for the cross products involving fiber and
planar guide eigenwaves. The latter integrals are computed
numerically. The exceptionally lengthy formulas and the
little practical interest in knowing directly the &, and &,
field distributions restrained us from giving their expres-
sions. Instead of this, the reflection coefficient R, and the
coupling coefficient computed form the A,,(a) term are
quoted in the next section.

Z f " qdq (B —kony) V(0 @) ¥l @)

m=—o0

too. [ (14 e2m™)
+f0 }\d}\[ ST
Te/™

+ o0
Y J.(Ap) T, (Ap))e o m

m= -

(22)

(1 + e2jk0now)
- ejZkow_l

1 + o0
K12(p7q)lpl’q)/)=;‘/0 Ad}‘ -

1— e2/'rw

Te™

kyn e komo® ] to

L I, (p),(Ap)elmre

[oe]

(23)

— g2lokonow

2w -

1 + 00 '
Ky(p,0l0’,¢) = ;fo AN |7

- e

konoe/konow ] + o0

_ e2jk0n0w

Jo(1+ 2kamov)

Y I, (Ap)J, (Ap) e mPeIm

m = —00

(24)

1 .+ T(1+ eﬂ”“)
Ky(p,9lo',¢) = —;fo %[

1

7Y — s=e,on=1

Notice that in (25) the transformations x=pcose, x =
p’cosg’ and y=psing, y’'=p'sing’ should be incorpo-
rated.

It can easily be shown that if n; = n, and n{ — n%, then
K, -0 (i=12; j=1,2) and the solution of (19), (20)
reduces to the elementary problem of reflection from a
dielectric layer placed between two different media. There-
fore, following exactly the same raison d’étre as in [7], an
iterative procedure could be used to solve approximately
the system (18) and (19). In this paper up to first-order
iterative solutions have been obtained. The zeroth-order
solution is obtained by setting

é&(P,‘P) = g)lo(P,‘P)
@ﬂz(PJP) = ‘9@29(9,‘73) (26)
1+ B,(w) 230(1 A4,0) e

28,
kong

1_62/'rw l_eZJkOnow

+ o0 Ns
+5- [ Cdaee 0= T Y (0, = kon{) U (x) U,

] Y T (Ap)J, (Ap')e/moe=imo

— o0

)+ [T doa(x, )0, ) (B~ kon). (29)

III. COMPUTATION OF COUPLING AND REFLECTION

COEFFICIENTS

Assuming the &(p, @) and &,(x’, y) fields are known
on the z=0 and z=w interface planes, it is possible to
compute the electric fields in either z <0 or z>w semi-
infinite spaces. To this end, the first-order iterative solu-
tions &), &, are substituted into (6) and (8) to derive the
guided wave amplitudes inside the fiber and planar wave-
guides, respectively. The use of the first-order approxima-
tion is justified from the conclusions of the analysis of the
abruptly terminated planar dielectric waveguide [7], where
a satisfactory convergence has been observed. The use of
orthogonality relations given in the Appendix and integrals
for the product of Bessel functions resulted in the follow-
ing expression from the reflection coefficient on the fiber
guide:

o 2/k0n0w) (180 0”2)k0 no (W)

Bl(W)_/()+®}‘d>\ [(C1(>WW)_ Cz(W)Al(W)_“Az(W)(Cs(}\,W)_ C4(W))] (27)
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where
P e L et
! (no=ni)(ny=ny)+ e 0" (ng+ni)(ng+ n,)
(28)
ejko’low
A,
() (ng—=nj)(ny—ny)+e>o"(ng+n{)(n,+ny)
(29)
ejZkonow__l
B -
1(w) kon,(e2/komo™ — 1)+ kong (14 e2/Fomov)
(30)

(14 e2m)

C(A,w) = Cy(w) =C1(0,w) (31)

el/'rw_l

JTw

C3(?\,w)=e Cy(w)=C;(0,w). (32)

J2rw __ 1

In a similar way, the amplitude coefficient of the domi-
nant-systemtric even TE mode propagating inside the
planar waveguide is obtained as

2B,

T

Aata) =2 e [ v e () % (00)

A4,(w)

2 jkow
e*Jxo konyg

Jkow

{Bz(”’)I‘H(W)l_e (Uel_kOnl)}

4B°C°/+°°mx [4,(0)(Cs (A, w)

kong Ya
= Ca(w)) = A, (w)(Ci(A, w) = Cy(w)]
K= n)b
(a5 =2)(v>+¥)
— AK,(vb) 1 (AD))

— B,(w)

I,(N)

(vK (b)) Jy(Ab)

(33)

where C,, a,,v, and I,(A) are given in the Appendix. In
computing the numerical values of the 4 4(a) coefficients,
a two-dimensional numerical integration is performed in-
volving the product of the U,(x) and ¥,(p,p) mode
functions. Owing to the highly spatial concentration of
these functions near the guiding axes, no convergence
problems are encountered. Furthermore, it is necessary to
compute in both the R, and A4,,(a) coefficients improper
integrals with respect to the A integration variable. To this
end, a 12-point Gaussian quarature numerical integration
procedure is employed after dividing the integration do-
mains into an adequate number of subintervals. The trun-
cation of the infinite bounds is taken sufficiently high to
ensure convergence.

IV. NUMERICAL RESULTS

Numerical computations have been performed by using
the analytical results obtained in the previous sections. In
all the computations, the free-space radiation wavelength
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is taken to be
Ao=155pm (=27/k,).
The single-mode fiber characteristics are
ny =1.450 n,=1.454

and the corresponding planar guide dimensions modeling a
GaAs laser diode are taken to be

d=0.5pm ni =340 nh=3.61.
The space between the two guides is taken to be air, i.e.,

ny=1. In order to compute the coupling efficiency, the
following mode power ratio is defined:

b=5pum

Coupling Efficiency = CE

total power (— oo <a < + o0)
- . (34)
incident fiber mode power

{ planar guide dominant TE, mode}

On substituting the planar guide dominant-mode function
into the Poynting theorem written on the z = w plane, the
total power coupled into the planar guide is found to be

1 + o0 2
b=t | dela(@lea(a). (9)
In a similar way, the incident fiber mode total power is
ny

when the [*%pdp|¥,(p, )|* =1 normalization condition
1s satisfied. Then, according to (34),

2Ue1(a) ‘

kony

P + o0
CE=2— [ dalay(a) (37)

P /o
Notice that in integrating the Poynting vector on the z =w
plane the total power coupled into the TE planar guide is
obtained as a superposition of |A4,,(a)|*> mode amplitudes.
A Simpson rule numerical integration procedure is em-
ployed to compute the integral in (37). For a given specific
value of «, the guided wave inside the planar guide travels
parallel to the unit vector.

~

N,=Ecosf + p'sinf

(38)

where
v.{a
cosf = L (39)
a’+vi(a)
a
sinf = (40)

Ja* +v,(a)

as also illustrated in Fig. 1. Numerical computation reveals
that the |4,(a)|? has significant values only for a ~0
(i.e., 8 ~ 0). A specific | 4,(a)|? distribution is presented in
Fig. 2 using polar coordinates. This shows that the excited
TE mode inside the planar guide is almost linearly polarized
and that the assumptions in writing (3) are valid in the
framework of the present analysis.

In Fig. 3 the variation of CE with lateral displacement %
(see Fig. 1) is presented for a w=121.8 um interguide
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Fig. 4. Dependence of coupling efficiency (CE) on interguide distance
w for h =0 and the same set of parameters as in Fig. 3.

Fig. 2. Dependence of dominant TE planar guide mode amplitude

|4,4(a)> on propagation direction § (see Fig. 1 and (39), (40)) for

w=120 pm and A =0.

- .
CE WH
_In
planar guide
012~
008~
0.04—

I I ]
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Fig. 3. Variation of coupling efficiency (CE) with the lateral displace-
ment between the two guide axes h (see Fig. 1) for a single-mode fiber
with =35 pm, n; =1.450, and n, =1.454 and a dielectric planar guide
2d =1 pm, n{ =340, and nj =3.61 at Ay =1.55 pm operation wave-
length. The interguide distance is w =121.8 pm and ny =1.

h(um)

distance. It is observed that an A=35 pm displacement
could reduce the coupling efficiency 6 dB below the peak
CE when h=0. The dependence of CE on the interguide
distance w is investigated for small displacements around
w =60 pm and w =120 pm distances. The expected stand-
ing wave patterns are observed in Fig. 4 when the two
guide axes coincide (i.e., & =0). The average CE values
are approximately equal to 0.15, and it is slightly higher
for w ~ 60 pm distances. Furthermore, the CE fluctuates

1'0_‘IR|

o

0.8 —
0.8 - ,.\

0.7 4

0.6

"
~..
—
-

0.5 \

—————
-

04

i I T
60 61 62

Variation of |R| reflection coefficient of the fiber guide for the
same set of parameter values as in Fig. 3 and 4 =0.

w{lLm)

Fig. 5.

from 0.12 to 0.18 periodically. The period is equal to the
free-space wavelength A, = 27/k;=1.55 pm.

The variation of the reflection coefficient R, on the
fiber guide has also been computed. In Fig. 5, the variation
of |R,| with interguide distance w is presented. A signifi-
cant fluctuation (almost 100 percent) is observed in the
reflected power inside the fiber guide when the interguide
distance w changes by half a wavelength. Comparing Figs.
4 and 5, it is shown that when CE is high R is low, and
vice versa.

It is necessary to point out that in practice planar
dielectric slab waveguides (i.e., laser diodes) always have
finite width (along with y’ axis, see Fig. 1). Therefore, the
infinite-width planar guide assumed in this paper is an
approximation for the fiber-laser diode coupling. Consid-
ering the rather large width of laser diodes ( ~ 20 pm) and
the fact that the guided waves inside the planar guide are
taken with an arbitrary propagation direction on the x"y’
plane, the spillover radiation entering the planar guide for

y > A, is expected to be insignificant.
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V. CONCLUSIONS

The coupling between an abruptly terminated single-
mode optical fiber and a dielectric planar waveguide has
been analyzed. Weak guidance approximations in both
guides are employed to simplify the analysis and to achieve
tractability. Furthermore, the same weak guidance condi-
tions are employed to obtain approximate analytical re-
sults where only a few numerical integrations are required
to obtain numerical results. Computations shows that a
coupling efficiency of around 20 percent could be achieved
between the two guides under proper alignment. The most
critical tolerance seems to be lateral (i.e., & parameter of
Fig. 1) displacement of the two guide axes. The fluctuation
of the coupling efficiency with the interguide-distance mi-
cromovements signifies the critical dependence of laser
diode operation on strong externally reflected power levels
in optical transmitter systems.

APPENDIX
A. Single-Mode Fiber Guide Spectrum
Guided Modes:
Ky(agh)
——Jy(ayp) forp<b
Yo(p,@) = Cof Jolagh) 7" Y
Ko(ve) forp> b

where a, = (kin}—B3)Y?* and y= (B¢ - kin})/% The

propagation constant f, is obtained by solving the tran-
scendental equation

agJg(ash)  vK{(vb)

Jo(aoh)  Ko(vb)

(A2)
and the normalization constant C, of the lowest order

mode is

_ 2J3(aqb)
- b2(J02(a0b)K12(yb)+ Kg(Yb)Jf(aob))

G (A3)

so that

mep dpdolp, @) ¥ (0, 9) =1

1S satisfied.
Radiation Modes:

¥,.(p,9lq)
J,.(op)
=A,e/m? Cm(lI) forp<b
(7,(gp)+ D,(q)Y,(g0))  forp>b
(A4)
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where m=0,41,+2,43,---,; 0 <g < +0c0; and
aJ,;(ab)Y,(gb)— J,(ab)Y,(gb)q
Cu(9)=— — : (A5)
4/, (gb)Y,,(gb)— J,(cb)Y,(gb)q
b (q) = ¥nlo0)0n(ab) = I, (0b) T, (gb) (8)
" J,(0b)Y,(gb)— ¢/, (b)Y, (gb)
1/2 12

o = (k3n3 - B?)
-1,2

B=(kini—q?)
A,=(1+D2)
Orthogonality Relations:

1

+ 00 d 2.” d % ,
277/,,:0’) pf¢=o ‘Prle(P,q’M)H’/ (P, 9lg")

1
=;5(q—q’)8"2m (A7)
1 + oo Yo
o d d , * , =0.
2,,fp=0P Pf(pzo Yoo, @)k (0, 9lq) (A8)
B. Planar Guide Spectrum

Guided Modes: For even modes,

e¥e(x+d) forx<—d
U,x)=G cos(Kx) for —d d
e\ "\ cos(K,d) x
e =) forx>d

Gon= (¥, +v./K2+d/cos* (K,d)) .

€n

For odd modes,

— et (x*d) forx <—d
U (x) =G sin ( Kyx) ; J p
=Gopl =7~ —d<x<
Oll(x On Sin(KOd) or X
e Yo(x=d) forx>d

Gon= (Yo '+ Yo /K3 + d /sin® (Kod)) ™2 (A9)
Transcendental equations:
Y. =K, tan(K.d) Ko=—1y,tan(K,d)
¥, = (az + 0% - k(z)nlz)l/2
K,=(k2ni—a*>—v2)'".

Orthogonality relations:

/j:uen(x) Uy, (x)dx=3§,, (A10)
f+wdxuen(x)uon(x) =0. (A11)

Radiation Modes: For even modes,
cos(p(x+d)—x,(p)) forx<—d

1 _gl_cos(ox)

V7 | C(p) cos(od)
cos(p(x—d)+x.(p))

9. (x.p) = for —d<x<d

forx>d.
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